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Abstract. Blind ptychography is the scanning version of coherent diffractive imaging
which seeks to recover both the object and the probe simultaneously.

Based on alternating minimization by Douglas-Rachford splitting, AMDRS is a blind
ptychographic algorithm informed by the uniqueness theory, the Poisson noise model and
the stability analysis. Enhanced by the initialization method and the use of a randomly
phased mask, AMDRS converges globally and geometrically.

Three boundary conditions are considered in the simulations: periodic, dark-field and
bright-field boundary conditions. The dark-field boundary condition is suited for isolated
objects while the bright-field boundary condition is for non-isolated objects. The periodic
boundary condition is a mathematically convenient reference point. Depending on the avail-
ability of the boundary prior the dark-field and the bright-field boundary conditions may
or may not be enforced in the reconstruction. Not surprisingly, enforcing the boundary
condition improves the rate of convergence, sometimes in a significant way. Enforcing the
bright-field condition in the reconstruction can also remove the linear phase ambiguity.

1. Introduction

Ptychography uses a localized coherent probe to illuminate different parts of a unknown
extended object and collect multiple diffraction patterns as measurement data (Fig. 1). The
redundant information in the overlap between adjacent illuminated spots is then exploited
to improve phase retrieval methods [39, 42]. An important feature of ptychography [50, 51]
is that the probe needs not be known precisely beforehand and can be recovered along with
the unknown object.

Recently ptychography has been extended to the Fourier domain [40,60]. In Fourier ptychog-
raphy, illumination angles are scanned sequentially with a programmable array source with
the diffraction pattern measured at each angle [27,53]. Tilted illumination samples different
regions of Fourier space, as in synthetic-aperture and structured-illumination imaging.

Yet, despite significant progress that allows for reliable practical implementation, some of the
technique’s fundamentals remain poorly understood [47]. For example, precise conditions for
uniqueness of blind-ptychographic solution are not known until recently. Roughly speaking
the uniqueness theory [12] says that with the use of a randomly phased probe and for a
general class of irregular scan schemes (e.g. (1) and (2)), called the mixing schemes, the only
ambiguities are a scaling factor and an affine phase ramp, both of which are intrinsic to blind
ptychographic reconstruction. In contrast, in standard, non-ptychographic phase retrieval
the exit wave (the multiplication of the probe and the object) alone suffers ambiguities such
as a global phase factor, a global spatial translation and the twin image. Further the exit
wave in standard phase retrieval can not be unambiguously splitted into the probe and
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Figure 1. Simplified ptychographic setup showing a Cartesian grid used for
the overlapping raster scan positions [36].

the object without other strong prior constraint [13]. This makes clear the fundamental
advantage of the ptychographic method.

The purpose of this work is to present reconstruction schemes informed by the uniqueness
theory, analyze the algorithmic structure and demonstrate by numerical experiments the
global and geometrical convergence properties of the schemes.

We adopt the following notations in the paper. Let T be the set of all shifts, including (0, 0),
involved in the ptychographic measurement. For general ptychographic schemes, we denote
by µt the t-shifted probe for all t ∈ T and Mt the domain of µt. Let f t the object restricted
to Mt and Twin(f t) the twin image of f t defined in Mt. We say that the object part f t

has a tight support in Mt if Mt does not fully contain any spatially shifted support of f t.
Let f := ∪tf

t ⊆ M := ∪tM
t.

Several ideas can be drawn from the uniqueness theory [12] that prescribes precise conditions
under which ptychographic ambiguities are limited to a scaling factor and an affine phase
ramp.

First the theory recommends the use of irregular perturbations of raster scan of step size τ
which have been widely practiced in the literature. One is

Rank-one perturbation tkl = τ(k, l) + (δ1k, δ
2
l ), k, l ∈ Z(1)

where δ1k and δ2l are small random variables relative to τ . The other is

Full-rank perturbation tkl = τ(k, l) + (δ1kl, δ
2
kl), k, l ∈ Z(2)

where δ1kl and δ2kl are small random variables relative to τ .

Second the theory recommends the use of a randomly phased probe with the unknown
transmission function µ0(n) = |µ0|(n)eiθ(n) where θ(n) are random variables and |µ0|(n) �=
0, ∀n ∈ M0. Randomly phased probes have been adopted in ptychographic experiments
[32, 35, 41, 48].
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Third, the theory suggests the probe phase constraint (PPC) as the probe initialization. We
say that a probe estimate ν0 satisfies PPC with δ < 1 if

∡(ν0(n), µ0(n)) < δπ, ∀n.(3)

The default case is δ = 1/2 and PPC has the intuitive meaning ℜ(ν̄0⊙µ0) > 0 at every pixel
(where ⊙ denotes the component-wise product, the bar the complex conjugate and ℜ the real
part), which implies certain similarity of ν0 to µ0.

The constraint (3) represents prior information about the probe and, in practice, needs only
to hold for sufficiently large number of pixels n. We use (3) for selecting and quantifying
initialization, instead of the usual 2-norm.

Fourth, the theory advises a probe size and overlap such that the objects parts {f t : t ∈ T }
mutually overlap sufficiently and at least one part f t has a tight support in Mt. The reader
is referred to [12] for the technical definition of sufficient overlap which depends not only
on the overlap of adjacent illuminations but also on the object support. For example, the
overlap requirement of adjacent illuminations for a sparsely supported object is higher than
that for a densely support object. In the literature, the adjacent illuminations have at least
50%, typically 60-70%, overlap [3, 33]. This rule of thumb is more stringent than necessary
in the case of an extended, densely supported object.

1.1. Our contribution. Our reconstruction scheme is based on alternating minimization
with the Douglas-Rachford splitting (DRS) method. DRS is a proximal point method closely
related to the Alternating Direction Method of Multipliers (ADMM). The existing theory and
analysis for DRS and ADMM (see, e.g. [11,16,18,29]) are limited to the convex optimization,
except for a few exceptions (see e.g. [5, 21, 28]). In particular, the performance of DRS and
ADMM in the non-convex setting depends sensitively on the choice of the objective functions
as well as the selection of the relaxation parameters and the step size which are the main
focus of our proposed scheme.

Our choices of the objective functions and the step size are informed by the uniqueness
theory [12], the Poisson noise model and the stability analysis. The confluence of the three
considerations leads to the proposed scheme (acronym AMDRS). The crux of our stability
analysis (Proposition 2.1 and 2.2) is that the true solution (modulo the scaling factor and
the affine phase ambiguity) to blind ptychography are stable fixed points of AMDRS with
any step size and, moreover, in the case of the unit step size, all other fixed points are
saddle points. This suggests that a unit step size is a good choice for AMDRS in contrast
to (sufficiently) small step sizes typically required for nonconvex convergence analysis [21,
28].

For any iterative scheme for non-convex optimization, the initialization of the iteration plays
a crucial role in the convergence of the scheme. The initialization step is often glossed over
in the development of numerical schemes due to lack of a good metric (see e.g. [31, 50, 56]).
In our numerical experiments, PPC turns out to be an excellent initialization method and
metric for controlling the convergence behavior of the schemes. In particular, our schemes
converge globally and geometrically under PPC with δ = 1/2.
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In additional to demonstrate the numerical performance of the proposed schemes, we propose
a special boundary condition (the bright-field boundary condition) to remove the linear phase
ambiguity. The capability of removing the linear phase ambiguity is particularly important
for 3D blind tomography as the different linear phase ramps for different projections would
collectively create enormous 3D ambiguities that are difficult to make consistent.

The rest of the paper is organized as follows. In Section 2, we introduce the Douglas-Rachford
splitting method as the key ingredient of our reconstruction algorithms, Gaussian-DRS and
Poisson-DRS. We give the fixed point analysis in Section 2.3. In Section 3, we perform
numerical experiments with our schemes. In Appendix A, we show that Gaussian-DRS is an
asymptotic form of Poisson-DRS. We conclude in Section 4.

2. Alternating minimization by Douglas-Rachford splitting

For simplicity, let supp(f) ⊆ Z2
n ⊆ M and let M0 := Z2

m,m < n, be the initial probe
region with the structured illumination given by µ0. The pixels in M\Z2

n merits a separate
treatment (referred to as boundary condition) depending on the experimental set-up (see
Section 3.6).

Let F(ν, g) ∈ CN be the totality of the Fourier (magnitude and phase) data corresponding to
the probe ν and the object g such that |F(µ, f)| = b where b is the noiseless ptychographic
data. Since F(·, ·) is a bilinear function, Akh := F(µk, h), k ≥ 1, defines a matrix Ak for the
k-th probe estimate µk and Bkη := F(η, fk+1), k ≥ 1, for the (k+1)-st image estimate fk+1

such that Akfj+1 = Bjµk, j ≥ 1, k ≥ 1.

For any y ∈ Cm×m, sgn(y) is defined as

sgn(y)[j] =

{

1 if y[j] = 0
y[j]/|y[j]| else.

The basic strategy for blind ptychographic reconstruction is to alternately update the object
and probe estimates starting from an initial guess [13, 50, 51]. We pursue the same strategy
and perform the object and probe updates by solving certain minimization problems.

Algorithm 1: Alternating minimization (AM)

1: Input: initial probe guess µ1 ∈ PPC(k, δ).
2: Update the object estimate fk+1 = argminL(Akg) s.t. g ∈ Cn×n.
3: Update the probe estimate µk+1 = argminL(Bkν) s.t. ν ∈ Cm×m.
4: Terminate if ‖|Bkµk+1| − b‖2 stagnates or is less than tolerance; otherwise, go back to

step 2 with k → k + 1.

2.1. Alternating minimization. A main feature of alternating minimization scheme is the
monotonicity property:

L(Akfk) ≥ L(Ak+1fk+1), L(Bkµk) ≥ L(Bk+1µk+1).
4



We consider two log-likelihood cost functions [2, 52] for noise-robustness

Poisson: L(y) =
∑

i

|y[i]|2 − b2[i] ln |y[i]|2(4)

Gaussian: L(y) =
1

2
‖|y| − b‖22(5)

based on the maximum likelihood principle for the Poisson noise model. The Poisson log-
likelihood function (4) is asymptotically reduced to (5) as shown in Appendix A.

The ptychographic iterative engines, PIE [44], ePIE [33] and rPIE [31], are both derived from
the amplitude-based cost function (5). The maximum likelihood scheme is also a variance
stabilization scheme which uniformizes the probability distribution for every pixel regardless
of the measured intensity value [26]. It is well established that the amplitude-based cost
function (5) outperforms the intensity-based cost function 1

2
‖|y|2 − b2‖22 [56]. See [19,59] for

more choices of objective functions.

For non-convex iterative optimization, a good initial guess or some regularization is usually
crucial for convergence [2,52]. We assume that the initial guess for the probe satisfies PPC.
To test the linear phase ambiguity, we also consider the probe initialization

µ1(n) = µ0(n) exp

[

i2π
k · n
n

]

exp [iφ(n)], n ∈ M0(6)

where φ(n) are independently and uniformly distributed on (−δπ, δπ). We use δ ∈ [0, 1/2]
as the control parameter for the proximity of the initial probe to the true probe, mod-
ulo a linear phase factor represented by k, and denote this class of probe initialization by
PPC(k, δ).

2.2. DR splitting (DRS). We formulate the inner loops (Step 2 and 3 in Algorithm 1) of
AM as

(7) min
u

K(u) + L(u)

where the additional objective function K enforces the constraint that u is in the range of
Ak or Bk.

We solve (7) by the Douglas-Rachford splitting (DRS) method which is a proximal point
algorithm for minimizing a sum of two objective functions [11, 29]. This is motivated by
the good performance of the classical Douglas-Rachford (CDR) algorithm [9, 29] (aka the
difference map [10] in the optics literature), a special case of DRS with an infinitely large
step size, which has been used for ptychographic reconstruction [50, 51, 55] and analyzed
in [5,6]. The CDR iteration, however, exhibits only a sub-linear convergence globally in the
noiseless case [5] and, when the optimization problems become infeasible (e.g. with noisy
data), tends to fluctuate and underperform, hence the search for a faster convergent and
more robust DRS.
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DRS is defined by the following iteration for l = 1, 2, 3 · · ·

(8)

yl+1 = proxK/ρ(u
l);

zl+1 = proxL/ρ(2y
l+1 − ul)

ul+1 = ul + zl+1 − yl+1

where proxL/ρ(u
k) := argmin

x
L(x) + ρ

2
‖x− uk‖2. For the initial guess u1

1 in our simulations,

we let u1
1 = A∗

1f1 where f1(n) is a phase object with i.i.d. phase uniformly distributed over
[0, 2π] or a constant value 0. Here γ = 1/ρ is often referred to as the step size of DRS.

It can be checked that DRS (7) is formally equivalent to the Alternating Direction Method
of Multipliers (ADMM)

max
λ

min
y,z

L(y) +K(z) + 〈λ, y − z〉+ ρ

2
‖z − y‖2.

Our choice of K is important to our implementation of DRS. Since the object estimate in
the k−th epoch must be of the form Akg for some g ∈ Cn×n, we let K(u) be the indicator
function χk(u) of the range of Ak, i.e. χk(u) = 0 if y is in the range of A∗

k; and χk(u) = ∞
otherwise. For this choice of K, proxK/ρ(u) = Pku is independent of ρ. This should be
contrasted with the choice of the distance function adopted in [28] for the tractability of the
convergence analysis due to the smoothness of the distance function.

For the Gaussian case (5), we update the object estimate as

fk+1 = A†
ku

∞
k(9)

where u∞
k is the terminal output of the following iteration

ylk = AkA
†
ku

l
k(10)

zlk =
1

ρ+ 1
b⊙ sgn(2ylk − ul

k) +
ρ

ρ+ 1
(2ylk − ul

k)(11)

ul+1
k = ul

k + zlk − ylk.(12)

Substituting (10) and (11) into (12) and reorganizing the resulting equation, we obtain

ul+1
k =

1

ρ+ 1
ul
k +

ρ− 1

ρ+ 1
Pku

l
k +

1

ρ+ 1
b⊙ sgn

(

2Pku
l
k − ul

k

)

(13)

=
1

2
ul
k +

ρ− 1

2(ρ+ 1)
Rku

l
k +

1

ρ+ 1
b⊙ sgn

(

Rku
l
k)

where Pk = AkA
†
k is the orthogonal projection onto the range of Ak and Rk = 2Pk − I is the

corresponding reflector.

Likewise, we update the probe as

µk+1 = B†
kv

∞
k(14)
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where v∞k is the terminal output of the following iteration

vl+1
k =

1

ρ+ 1
vlk +

ρ− 1

ρ+ 1
Qkv

l
k +

1

ρ+ 1
b⊙ sgn

(

2Qkv
l
k − vlk

)

(15)

=
1

2
vlk +

ρ− 1

2(ρ+ 1)
Sku

l
k +

1

ρ+ 1
b⊙ sgn

(

Skv
l
k)

where Qk = BkB
†
k is the orthogonal projection onto the range of Bk and Sk the corresponding

reflector.

For the Poisson case (4), the inner loops take a more complicated form

ul+1
k =

1

2
ul
k −

1

ρ+ 2
Rku

l
k +

ρ

2ρ+ 4

√

|Rkul
k|2 +

8(2 + ρ)

ρ2
b2 ⊙ sgn

(

Rku
l
k

)

(16)

vl+1
k =

1

2
vlk −

1

ρ+ 2
Skv

l
k +

ρ

2ρ+ 4

√

|Skvlk|2 +
8(2 + ρ)

ρ2
b2 ⊙ sgn

(

Skv
l
k

)

(17)

After the inner loops terminate, we update the object and probe as (9) and (14),respectively.

We shall refer to DRS with the Poisson log-likelihood function (16)-(17) and the Gaussian
version (13)-(15) by the acronyms Poisson-DRS and Gaussian-DRS, respectively. We call
the the two algorithms the Alternating Minimization with Douglas-Rachford Splitting (AM-
DRS). Due to the non-differentiability of both K and L, the global convergence property of
the proposed DRS method is beyond the current framework of analysis [28].

In the limiting case of ρ → 0, both Gaussian-DRS and Poisson-DRS become the classical
Douglas-Rachford algorithm.

The computation involved in Gaussian-DRS and Poisson-DRS are mostly pixel-wise opera-
tions (hence efficient) except for the pseudoinversesA†

k = (A∗
kAk)

−1A∗
k andB†

k = (B∗
kBk)

−1B∗
k.

In blind ptychography, due to the isometry of the Fourier transform, A∗
kAk and B∗

kB
†
k are

diagonal matrices and easy to invert [12].

2.3. Fixed points of Gaussian-DRS. For simplicity, we shall focus the stability analysis
on the fixed points of Gaussian DRS.

Suppose that the limit (u, v) = limk,l→∞(ul
k, v

l
k) exist where (u

l
k, v

l
k) are two-parameter arrays

of the Gaussian-DRS iterates. Let limk→∞ Ak = A∞, limk→∞ Bk = B∞.

Let P∞ = A∞A†
∞ and Q∞ = B∞B†

∞ denote the orthogonal projection onto the range of
A∞ and B∞, respectively. Let P⊥

∞ = I − P∞ and Q⊥
∞ = I − Q∞ denote the orthogonal

complements of P∞ and Q∞, respectively. Denote R∞ = 2P∞ − I, S∞ = 2Q∞ − I.

Passing to the limit in (13)-(15) we obtain the fixed point equation for Gaussian-DRS

u =
1

2
u+

ρ− 1

2(ρ+ 1)
R∞u+

1

ρ+ 1
b⊙ sgn

(

R∞u)(18)

v =
1

2
v +

ρ− 1

2(ρ+ 1)
S∞v +

1

ρ+ 1
b⊙ sgn

(

S∞v)(19)
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It is straightforward to check that the true solution (u0 := F(µ, f), v0 := F(µ, f)) is a fixed
point of Gaussian-DRS (13)-(15) and Poisson-DRS (16)-(17).

We now give theoretical motivation for our numerical choice of ρ = 1.

For a solution (u, v) to the fixed point equation (18)-(19), define the reflection images,
x := R∞u, y := S∞v. Denote the right hand side of (18) as U(x) and consider a perturbation
of x by ǫz where ǫ is a small positive number. Set Ω = diag(sgn(x)), C = Ω∗A∞, η = Ω∗z.
Suppose |x| > 0. From somewhat tedious but straightforward calculation, we have

lim
ǫ→0

1

ǫ
(U(x+ ǫv)− U(x)) = ΩJA(η)

where

JA(η) = CC†η − 1

1 + ρ

[

ℜ
(

2CC†η − η
)

+ ı
(

I − diag(b/|x|)
)

ℑ
(

2CC†η − η
)]

.(20)

The differential JB of the right hand side of (19) has the similar structure.

We prove the following results in Appendix B and C. The first result says that for ρ = 1 all
the non-solution fixed points are linearly unstable and the second says that for ρ ∈ [0,∞)
the true solutions to blind ptychography are stable fixed points.

Proposition 2.1. Let (u, v) be a solution to (18)-(19) with ρ = 1 such that |x| > 0 or
|y| > 0. Suppose

‖JA(η)‖2 ≤ ‖η‖2, ∀η ∈ C
N or ‖JB(ξ)‖2 ≤ ‖ξ‖2, ∀ξ ∈ C

N

where N is the dimension of data. Then f∞ := A†
∞u and µ∞ := B†

∞v are a solution to blind
ptychography, i.e. |F(µ∞, f∞)| = b. Moreover, we have

x = A∞f∞ = b⊙ sgn(x) = B∞µ∞ = y.(21)

Proposition 2.2. Let (u, v) be a solution to (18)-(19) for any ρ ∈ [0,∞) such that |F(µ∞, f∞)| =
b where µ∞ and f∞ are defined as in Proposition 2.1. Then ‖JA(η)‖2 ≤ ‖η‖2, ‖JB(ξ)‖2 ≤
‖ξ‖2 for all η, ξ ∈ CN and the equality holds in the direction ±ıb/‖b‖ (and possibly elsewhere
on the unit sphere).

Moreover, under the uniqueness conditions of [12], Proposition 2.1 and 2.2 then imply that
the true solution and its inherent ambiguities (modulo a scaling factor and affine phase
ramp) are the only stable fixed points of Gaussian-DRS with the unit step size. Therefore
Gaussian-DRS with the unit step size should not stagnate near a fixed point that is not a
solution to blind ptychography.

3. Experiments

As motivated by Proposition 2.1, we fix the DRS parameter ρ = 1 in all simulations. As a
result, (13)-(15) become

ul+1
k =

1

2
ul
k +

1

2
b⊙ sgn

(

Rku
l
k

)

vl+1
k =

1

2
vlk +

1

2
b⊙ sgn

(

Skv
l
k

)

.
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(a) (b)

Figure 2. (a) The real part and (b) the imaginary part of the first test image.

and (16)-(17) become

ul+1
k =

1

2
ul
k −

1

3
Rku

l
k +

1

6

√

|Rkul
k|

2 + 24b2 ⊙ sgn
(

Rku
l
k

)

vl+1
k =

1

2
vlk −

1

3
Skv

l
k +

1

6

√

|Skvlk|
2 + 24b2 ⊙ sgn

(

Skv
l
k

)

.

(a) RPP magnitudes (b) RPP phases

Figure 3. (a) Magnitudes and (b) phases of RPP.

3.1. Test objects. Our first test image is 256-by-256 Cameraman+ i Barbara (CiB). The
resulting test object has the phase range π/2. The second test object is randomly-phased
phantom (RPP) defined by f∗ = P ⊙ eiφ where P is the standard phantom (Fig. 3(a)) and
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(a) i.i.d. probe (b) Correlated probe c = 0.4

(c) Correlated probe c = 0.7 (d) Correlated probe c = 1

Figure 4. The phase profile of (a) the i.i.d. probe and (b)(c)(d) the correlated
probes of various correlation lengths.

{φ(n)} are i.i.d. uniform random variables over [0, 2π]. RPP has the maximal phase range
because of its noise-like phase profile. In addition to the huge phase range, RPP has loosely
supported parts with respect to the measurement schemes (see below) due to its thick dark
margins around the oval.

3.2. Measurement schemes. We do not explore the issue of varying the probe size in
the present work, which has been done with the classical Douglas-Rachford algorithm in
[6]. We fix the probe size to 60 × 60. In addition to the i.i.d. probe, we consider also
correlated probe produced by convolving the i.i.d. probe with characteristic function of the
set {(k1, k2) ∈ Z

2 : max{|k1|, |k2|} ≤ c ·m; c ∈ (0, 1]} where the constant c is a measure of
the correlation length in the unit of m = 60 (Fig. 4).

We let δ1k and δ2l in the rank-one scheme (1) and δ1kl and δ2kl in the full-rank scheme (2) to
be i.i.d. uniform random variables over �−4, 4�. In other words, the adjacent probes overlap
by an average of τ/m = 50%.
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(a) (b)

Figure 5. Geometric convergence to CiB at various rates for (a) Four com-
binations of objective functions and scanning schemes with i.i.d. probe (rank-
one Poisson, ro = 0.8236; rank-one Gaussian, ro = 0.8258; full-rank Poisson,
ro = 0.7205; full-rank Gaussian, ro = 0.7373) and (b) Poisson-DRS with four
probes of different correlation lengths (ro = 0.7583 for c = 0.4; ro = 0.8394 for
c = 0.7; ro = 0.7932 for c = 1; ro = 0.7562 for iid probe)

3.3. Error metrics. We use relative error (RE) and relative residual (RR) as the merit
metrics for the recovered image fk and probe µk at the kth epoch:

RE(k) = min
α∈C,k∈R2

‖f(k)− αe−ı2πk·r/nfk(k)‖2
‖f‖2

(22)

RR(k) =
‖b− |Akfk|‖2

‖b‖2
.(23)

Note that in (22) the linear phase ambiguity is discounted along with a scaling factor.

3.4. Different combinations. First we compare performance of AMDRS with different
combinations of objective functions, scanning schemes and random probes in the case of
noiseless measurements with the periodic boundary condition. We use the stopping criteria
for the inner loops:

‖|AkA
†
ku

l
k| − b‖2 − ‖|AkA

†
ku

l+1
k | − b‖2

‖|AkA
†
ku

l
k| − b‖2

≤ 10−4

with the maximum number of iterations capped at 60.

Figure 5 shows geometric decay of RE (22) at various rates ro for the test object CiB. In
particular, Fig. 5(a) shows that the full-rank scheme outperforms the rank-one scheme and
that Poisson-DRS outperforms (slightly) Gaussian-DRS while Figure 5(b) shows that the
i.i.d. probe yields the smallest rate of convergence (ro = 0.7562) closely followed by the rate
(ro = 0.7583) for c = 0.4.
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Figure 6. RE versus NSR

3.5. Poisson noise. For noisy measurement, the level of noise is measured in terms of the
noise-to-signal ratio (NSR).

NSR =
‖b− |A0f0|‖2

‖A0f0‖2

Figure 6 shows RE (22) for CiB versus NSR for Poisson-DRS and Gaussian-DRS with the
periodic boundary condition, i.i.d. probe and the full-rank scheme. The maximum number
of epoch in AMDRS is limited to 100. The RR stabilizes usually after 30 epochs. The
(blue) reference straight line has slope 1. We see that the Gaussian-DRS outperforms the
Poisson-DRS, especially when the Poisson RE becomes unstable for NSR ≥ 35%. As noted
in [7,31,61] fast convergence (with the Poisson log-likelihood function) may introduce noisy
artifacts and reduce reconstruction quality.

For the rest of the experiments, we use noiseless data, Poisson-DRS and the full-rank
scheme.

3.6. Boundary conditions. When the probe steps outside of the boundary of the object
domain, the area M\ Z

2
n needs special treatment in the reconstruction process.

The periodic boundary condition conveniently treats all diffraction patterns and object pixels
in the same way by assuming that Z

2
n is a (discrete) torus. The periodic boundary condition

generally forces the slope r in the linear phase ambiguity to be integers. The dark-field
and bright-field boundary conditions assume zero and nonzero values, respectively, in M\
Z
2
n.

Depending on our knowledge of the boundary values, we may or may not enforce the bound-
ary condition in each case. When the bright-field boundary condition is enforced, the linear
phase ambiguity disappears from the object estimate. On the contrary, enforcing the dark-
field boundary condition can not remove the linear phase ambiguity. In both cases, however,

12



(a) CiB reconstruction with PPC(0, 0, 0.5) (b) RPP reconstruction with PPC(0, 0, 0.4)

Figure 7. RE under various boundary conditions

(a) Reconstructed moduli with dark BC (b) Reconstructed phase error with periodic BC

Figure 8. RPP reconstruction with PPC(0, 0, 0.5) and (a) the dark-field BC
and (b) the periodic BC.

enforcing either boundary condition speeds up the convergence as shown in Figure 7 which
is produced by keeping the maximum iterations of the inner loops to 30.

Moreover, the dark-field boundary condition can pose a challenge for reconstruction if the
object domain has many dark pixels as in the case of RPP. Fig. 8(a) shows an example
of failed reconstruction with PPC(0,0,0.5) of RPP which has a piece of the shell shifted
sideway. Two ways to fix the problem: One is to improve the initialization condition and the
other is to use a different boundary conditions (periodic or bright-field BC). Fig. 8(b) shows
the reconstructed phase error with the periodic BC (note the scale of the color bar). Fig.

13



(a) Boundary value = 100 (b) Boundary value = 255

Figure 9. RE with PPC(-0.5, 0.5, 1
2
) and the boundary value (a) 100 and (b) 255

7(b) shows the relative error with probe initialization PPC(0, 0, 0.4) and various boundary
conditions.

3.7. Linear phase ambiguity. To show that the linear phase ambiguity is absent under the
bright-field boundary condition, we test AMDRS with the initialization PPC(−0.5, 0.5, 1

2
)

and use a more stringent error metric

RE2(k) = min
α∈C

‖f(k)− αfk(k)‖2
‖f‖2

.(24)

Note that PPC(−0.5, 0.5, 1
2
) violates the probe phase constraint ℜ(ν̄0 ⊙ µ0) > 0 allowed by

the uniqueness theory. The linear phase factor is introduced in the initialization to test if it
persists in the reconstruction.

We also use the less tolerant stopping rule

‖|AkA
†
ku

l
k| − b‖2 − ‖|AkA

†
ku

l+1
k | − b‖2

‖|AkA
†
ku

l
k| − b‖2

≤ 10−5

for the inner loops with the maximum number of iteration capped at 80, the rate of conver-
gence accelerates.

Fig. 9 demonstrates the capability of the bright-field boundary condition to eliminate the
linear phase ambiguity as the stronger error metric (24) decays geometrically before settling
down to the final level of accuracy. The higher boundary value (255 in Fig. 9(a)) leads
to faster convergence than the lower boundary value (100 in Fig. 9(b)). The final level of
accuracy, however, depends on how accurately the inner loops for each epoch are solved. For
example, increasing the maximum number of iteration from 80 to 110, significantly enhances
the final accuracy of reconstruction (not shown).
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4. Conclusion

We have presented reconstruction algorithms based on alternating minimization by Douglas-
Rachford splitting. Our choices of the objective functions and the step size are informed by
the uniqueness theory [12], the Poisson noise model and the stability analysis. The confluence
of the three considerations leads to the proposed scheme AMDRS.

Enabled by the PPC initialization method, AMDRS converges globally and geometrically in
all our experiments except in the case of RPP with the dark-field boundary condition and
the initialization condition PPC(0, 0, 0.5) due to the extensive area of dark pixels.

The boundary condition can have a significant impact on the performance of numerical
reconstruction. For either the dark-field or bright-field condition, enforcing the boundary
condition, whenever available, improves the rate of convergence.

Appendix A. The Poisson versus Gaussian log-likelihood functions

Poisson distribution

P (n) =
λne−λ

n!
Let n = λ(1 + ǫ) where λ ≫ 1 and ǫ ≪ 1. Using Stirling’s formula

n! ∼
√
2πne−nnn

in the Poisson distribution, we obtain

P (n) ∼ λλ(1+ǫ)e−λ

√
2πe−λ(1+ǫ)[λ(1 + ǫ)]λ(1+ǫ)+1/2

∼ 1√
2πλe−λǫ(1 + ǫ)λ(1+ǫ)+1/2

.

By the asymptotic

(1 + ǫ)λ(1+ǫ)+1/2 ∼ eλǫ+λǫ2/2

we have

P (n) ∼ e−λǫ2/2

√
2πλ

=
e−(n−λ)2/(2λ)

√
2πλ

.(25)

Namely in the low noise limit the Poisson noise is equivalent to the Gaussian noise of the
mean |y0|2 and the variance equal to the intensity of the diffraction pattern. The overall
SNR can be tuned by varying the signal energy ‖y0‖2.
The log-likelihood function for the right hand side of (25) is

∑

j

ln |y[j]|+ 1

2

∣

∣

∣

∣

b[j]

|y[j]| − |y[j]|
∣

∣

∣

∣

2

, b = noisy diffraction pattern.(26)

For small NSR and in the vicinity of b, we make the substitution
√

b[j]

|y[j]| → 1, ln |y[j]| → ln
√

b[j]
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to obtain

const. +
1

2

∑

j

∣

∣

∣

√

b[j]− |y[j]|
∣

∣

∣

2

.(27)

Appendix B. Proof of Proposition 2.1

Note that A†
∞u = A†

∞x,B†
∞v = B†

∞y and

P∞u = P∞x, P⊥
∞u = −P⊥

∞x

Q∞v = Q∞y, Q⊥
∞v = −Q⊥

∞y,

Hence we also have u = R∞x, v = S∞y.

There are two ways to express (18)-(19) in terms of y, x: First, by reorganizing,

b⊙ sgn(x) = P∞x− ρP⊥
∞x(28)

b⊙ sgn(y) = Q∞y − ρQ⊥
∞y,(29)

and, second, after the reflections R∞ and S∞, respectively,

P∞x+ ρP⊥
∞x = R∞ (b⊙ sgn(x))(30)

Q∞y + ρQ⊥
∞y = S∞ (b⊙ sgn(y)) .(31)

From (28)-(29) we obtain by the Pythogoras theorem

‖P∞x‖22 + ρ2‖P⊥
∞x‖22 = ‖b‖22 = ‖Q∞y‖22 + ρ2‖Q⊥

∞y‖22.(32)

If ‖P⊥
∞x‖2 = 0, then x = P∞x = b⊙ sgn(x) by (28), implying b = |A∞f∞| for f∞ := A†

∞u =
A†x. Likewise, if ‖Q⊥

∞y‖2 = 0, then y = Q∞y = b⊙ sgn(y) by (29), implying b = |B∞µ∞| for
µ∞ := B†

∞v = B†
∞y. In other words, (f∞, µ∞) solve the blind ptychography problem.

We now prove Proposition 2.1 by contradiction. For our purpose, it suffices to focus on
(28).

Suppose ‖P∞x‖2 < ‖b‖2 (or equivalently ‖P⊥
∞x‖2 6= 0). Applying Ω∗ and rewriting (30) we

have

CC†|x|+ ρ(|x| − CC†|x|) = 2CC†b− b

On the other hand, applying the operator C on (30) we have

CC†|x| = CC†b.

Combining the above two relations, we obtain

CC†|x| = CC†b =
ρ

1 + ρ
|x|+ 1

1 + ρ
b.(33)

Using (33) we now show that ‖JA(η)‖ > ‖η‖ if ρ ≥ 1 and η = ı(α|x| + βb) where α and β
are two positive constants such that ρβ > α. The choice of a purely imaginary η is to nullify
ℜ
(

η − 2CC†η
)

by means of (33). By (33), η can be written as

η = ı(α +
α

ρ
)CC†|x|+ ı(β − α

ρ
)b
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After some algebra with (20) and (33), we arrive at

JA(η) =
ı

1 + ρ

{[

ρ(ρ− 1)

ρ+ 1
(α + β) + α

]

|x|+ 2

[

2βρ

ρ+ 1
+

α(ρ− 1)

ρ+ 1

]

b+

[

2α

ρ+ 1
+

(1− ρ)β

1 + ρ

]

b2

|x|

}

For the rest of our analysis the case of ρ = 1 is particularly transparent.

For ρ = 1,

JA(η) =
ı

2

[

α|x|+ 2βb+ αb2/|x|
]

.

By the quadratic inequality, α|x| + αb2/|x| ≥ 2αb and hence ‖JA(η)‖2 ≥ (α + β)‖b‖2. On
the other hand, by (37), η = ı2αCC†|x|+ ı(β − α)b and hence

‖η‖2 ≤ 2α‖CC†x‖2 + (β − α)‖b‖2
where α < β. Therefore, as a consequence of ‖CC†|x|‖2 = ‖P∞x‖2 < ‖b‖2, the desired result
follows:

‖η‖2 < (α + β)‖b‖2 ≤ ‖JA(η)‖2.

Finally, for any linearly stable fixed point of Gaussian DRS, we now know from the above
analysis that ‖P⊥

∞x‖2 = 0 and hence x = P∞x which, combined with (28), yields the sought
after statement (21).

Appendix C. Proof of Proposition 2.2

As we have seen in the proof of Proposition 2.1 that any blind ptychography solution satisfies
x = P∞x = b⊙ sgn(x) and hence by (20)

JA(η) = CC†η +
1

1 + ρ
ℜ
(

η − 2CC†η
)

(34)

= ıℑ
(

CC†η
)

+ ℜ
(

CC†η
)

+
1

1 + ρ
ℜ
(

η − 2CC†η
)

.

We now show that ‖JA(η)‖2 ≤ ‖η‖2 for all η. The case for JB can be similarly analyzed.

To proceed, we shall write CC† = GG∗ where G is an isometry. This can be done for any
matrix C via the QR decomposition.

According to Proposition 5.9 and Corollary 5.10 in [5], GG∗ can be block-diagonalized into
one (N − 2n2)× (N − 2n2) zero block and 2n2 2× 2 blocks

[

λ2
k λkλ2n2+1−k

λkλ2n2+1−k λ2
2n2+1−k

]

, k = 1, 2, · · · , 2n2(35)

in the orthonormal basis {ηk, ıη2n2+1−k : k = 1, 2, · · · , 2n2} where ηk ∈ RN are the right
singular vectors, corresponding to the singular values λk, of

(36)

[

ℜ[K∗]
ℑ[K∗]

]

∈ R
2n2,N .
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Moreover, the complete set of singular values satisfy

1 = λ1 ≥ λ2 ≥ · · · ≥ λ2n2 = λ2n2+1 = · · · = λN = 0(37)

λ2
k + λ2

2n2+1−k = 1.(38)

In view of the block-diagonal nature of GG∗, we shall analyze JA(η) in the 2-dim spaces
spanned by the orthonormal basis {ηk, ıη2n2+1−k} one k at a time. Note that the first basis
vector ηk is real and the second ıη2n2+1−k is purely imaginary.

For any fixed k, we write η = (z1, z2)
T ∈ C2 and obtain

JA(η) =
(

λ2
kz1 + λkλ2n2+1−kz2

)

ηk +
(

λkλ2n2+1−kz1 + λ2
2n2+1−kz2

)

ıη2n2+1−k(39)

+
1

1 + ρ

[

(1− 2λ2
k)ℜ(z1)− 2λkλ2n2+1−kℜ(z2)

]

ηk

+
1

1 + ρ

[

2λkλ2n2+1−kℑ(z1)− (1− 2λ2
2n2+1−k)ℑ(z2)

]

η2n2+1−k.

Next we treat (39) as a linear function of ℜ(z1),ℜ(z2),ℑ(z1),ℑ(z2) with real coefficients in
the basis {ηk, ıη2n2+1−k, ıηk, η2n2+1−k} and represent JA by a 4 × 4 matrix which is block-
diagonalized into two 2× 2 blocks:

[

1
1+ρ

+ ρ−1
ρ+1

λ2
k

ρ−1
ρ+1

λkλ2n2+1−k

λkλ2n2+1−k λ2
2n2+1−k

]

,

[

λ2
k λkλ2n2+1−k

−ρ−1
ρ+1

λkλ2n2+1−k − 1
ρ+1

− ρ−1
ρ+1

λ2
2n2+1−k

]

.(40)

with the former of (40) acting on ℜ(z1),ℜ(z2) and the latter acting on ℑ(z1),ℑ(z2). In view
of their similar structure, it suffices to focus on the former.

Calculation of the eigenvalues with (37)-(38) gives

1

2(ρ+ 1)

[

ρ+ 2(1− λ2
k)±

√

ρ2 − 4λ2
k + 4λ4

k

]

(41)

which, with the + sign, equals 1 at k = 2n2 (recall λ2n2 = 0). Next we show that 1 is the
largest eigenvalue among all k and ρ ∈ [0,∞).

Note that the radical in (41) is real for any λk ∈ [0, 1] iff ρ ≥ 1. Hence, for ρ ≥ 1, the
maximum eigenvalue is 1 and occurs at k = 2n2. In particular, (41) becomes

1

4

[

1 + 2(1− λ2
k)± |1− 2λ2

k|
]

for ρ = 1,(42)

which achieves the maximum value 1 at k = 2n2 and the second largest eigenvalue 1−λ2
2n2−1

at k = 2n2 − 1.

For ρ < 1 and those k’s giving rise to some purely imaginary radical in (41), we calculate
the modulus of (41) and obtain the upper bound

√

1− λ2
k

1 + ρ
≤

√

1

1 + ρ
≤ 1, ∀k.(43)

In view of (41) and the leftmost term in (43), it is clear that the second largest (in modulus)
eigenvalue also occurs at k = 2n2 − 1.
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According Proposition 5.6 in [5], η1 = b and hence argmin‖η‖=1 |JA(η)| occurs in the subspace
spanned by {η2n2 , ıb} where η2n2 is a real-valued null vector of (36). It is easy to check that
a real null vector of (36) is also a null vector of K∗ and hence of P∞. Since x is in the range
of P∞, we conclude that argmin‖η‖=1 |JA(η)| contains ±ıb/‖b‖ and possibly elsewhere since
we do not know if λk > 0 for k > 2n2 without additional conditions.

The proof is complete.
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